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Abstract 

Trends in the behavior of band gaps in short-period superlattices (SLs) composed of CdO and MgO layers were ana-
lyzed experimentally and theoretically for several thicknesses of CdO sublayers. The optical properties of the SLs were 
investigated by means of transmittance measurements at room temperature in the wavelength range 200–700 nm. 
The direct band gap of {CdO/MgO} SLs were tuned from 2.6 to 6 eV by varying the thickness of CdO from 1 to 12 
monolayers while maintaining the same MgO layer thickness of 4 monolayers. Obtained values of direct and indirect 
band gaps are higher than those theoretically calculated by an ab initio method, but follow the same trend. X-ray 
measurements confirmed the presence of a rock salt structure in the SLs. Two oriented structures (111 and 100) 
grown on c- and r-oriented sapphire substrates were obtained. The measured lattice parameters increase with CdO 
layer thickness, and the experimental data are in agreement with the calculated results. This new kind of SL structure 
may be suitable for use in visible, UV and deep UV optoelectronics, especially because the energy gap can be pre-
cisely controlled over a wide range by modulating the sublayer thickness in the superlattices.
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Introduction
Wide band gap semiconductors like oxides and nitrides 
represent a family of semiconductors of crucial impor-
tance for modern optoelectronics, being used in short-
wavelength light emitting diodes, laser diodes and optical 
detectors, as well as high-power, high-temperature, and 
high-frequency electronic devices such as field-effect 
transistors [1]. The energy band gap is a key factor in 
many fields of science, such as photovoltaics and opto-
electronics. Ternary alloys can be obtained as random 
crystals or quasi-crystals short-period superlattices 
[2–5]. In the case of random crystals, in some systems 
there is a significant problem with obtaining materials in 
the full composition range without phase and concentra-
tion separation. This kind of problem has been reported 

in the case of ZnMgO and ZnCdO [6] oxide systems, 
especially because ZnO usually crystallizes in a wurtzite 
structure, whereas both CdO and MgO crystallize in a 
rock salt cubic structure [7]. Therefore, obtaining homo-
geneous alloys without crystal phase segregation in the 
middle composition range has proved to be a challenge 
in the case of these materials. This does not concern only 
oxides; a  similar problem has also been reported, for 
example, in the case of InGaN [8].

CdO with a rock salt crystal structure is one of the 
transparent conductive oxides (TCOs). One of the major 
disadvantages of CdO is its relatively small intrinsic 
direct band gap of only 2.2 eV. Even though the Burstein–
Moss effect caused by free carriers in the conduction 
band can shift the absorption edge to about 3 eV in most 
heavily doped CdO [9, 10], this is still not sufficient for 
the photovoltaic applications that utilize the UV part of 
the solar spectrum. Thus, opening the band gap of CdO 
will improve prospects for solar cell technologies. The 
cutoff working wavelength of solar-blind UV detectors 
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should be shorter than 280 nm, corresponding to a band 
gap value of 4.5  eV [11], which is much larger than, for 
example, the band gap of pure CdO and ZnO (3.37 eV). 
Therefore, opening of the CdO band gap is also crucial 
for this field.

The use of superlattices can allow much more pre-
cise control of the composition, and good-quality ter-
nary alloys in a wide range of compositions can be 
obtained in many semiconductor systems [2, 5, 12, 13]. 
Band gap engineering, crucial for the design of opto-
electronic devices, can be realized in SLs by varying the 
layer thicknesses [3, 14]. A direct band gap of 2.5 eV has 
been reported for CdO, whereas in the case of MgO an 
energy gap of 7.8 eV was observed in a rock salt structure 
[15]. Theoretically, the rock salt cubic structure is stable 
over all (Mg,Cd)O compositions, as expected from the 
preferences of the binary oxides [16]. Usually, however, 
CdO layers are grown at much lower temperatures than 
MgO; thus it is a problem to obtain homogeneous mixed 
crystals over the full composition range. For this reason 
the number of reports on CdMgO alloys is very limited, 
and increasing the quantity of Cd can result in the pres-
ence of two compositions, as has been described in the 
case of CdMgO grown by metal organic chemical vapor 
deposition (MOCVD) [17]. CdMgO alloy thin films with 
total Mg concentration as high as 44% were obtained by 
magnetron sputtering [18]. In the case of layers obtained 
by the pulsed laser deposition technique the energy 
band gap of CdMgO was shifted to 3.4 eV [19], whereas 
in polycrystalline In-doped CdMgO films the maxi-
mum value of the energy gap was reported to be about 
5 eV [20]. At the opposite end of the composition range, 
undoped and 1%, 2% and 3% Cd-doped MgO nanostruc-
tures were grown by the successive ionic layer adsorption 
and reaction (SILAR) method [21]. In the whole compo-
sition range only nanoparticles were obtained, but still in 
a range of Mg content of 0.34 ≤ x ≤ 0.84 the co-existence 
of two phases of Cd-rich and Mg-rich Cd1−xMgxO is 
reported [22].

Most recent theoretical works are based on density 
functional theory calculations and are devoted mainly to 
the properties of binary compounds of CdO and MgO, 
including investigation of structural [23–25], electronic 
[26], spectroscopic [27], optical [28–30], magnetic [31–
35] or other properties of doped compounds [36–38], 
Gorczyca et  al. [13, 14] have conducted band gap engi-
neering investigations of ZnO/MgO SL. No theoreti-
cal investigation of CdO/MgO superlattices has been 
reported in the literature, and this fact motivated us to 
study them.

In our previous work we have demonstrated the pos-
sibility of obtaining {CdO/MgO} SLs by Molecular 
Beam Epitaxy (MBE) [39]. In this study, we explore 

experimentally and theoretically methods for modulat-
ing the transparency of CdO-based TCOs by alloying this 
material with MgO, a larger band gap metal oxide with 
the same (rock salt) crystal structure. We grew {CdO/
MgO} superlattice (SL) quasi-alloys by MBE in the whole 
composition range, and showed that the energy gap can 
be increased from 2.2 to 6 eV by changing the CdO sub-
lattice thickness in these superlattices.

Methods
Short-period {CdO/MgO} SLs were grown by plasma-
assisted MBE (Compact 21 Riber) on differently oriented 
sapphire substrates: on c- and r-Al2O3. Before growth, the 
Al2O3 substrates were chemically cleaned and degassed 
in a buffer chamber at 700 °C. The substrates were then 
transferred to a growth chamber and annealed at 700 °C 
in oxygen (flow rate 3  ml/min). All of the multilayer 
structures were grown at 360 °C. Thin layers of CdO and 
MgO were deposited sequentially, and their thicknesses 
were estimated on the basis of growth conditions (num-
bers of periods in the individual samples were calculated 
to obtain the same final thickness of the samples). In the 
presented series of samples the thickness of the MgO 
sublayers is fixed, and we vary the thickness of CdO lay-
ers from ~ 1 to ~ 12 monolayers (ML).

A Panalytical X’Pert Pro MRD diffractometer was 
used to perform X-ray diffraction (XRD) analysis of the 
samples. The apparatus is equipped with a hybrid two-
bounce Ge (220) monochromator, a triple-bounce Ge 
(220) analyzer, and two detectors: proportional and Pix-
cel. Two types of measurements were performed: θ/2θ 
scans at low-resolution settings in a  wide angle range, 
and rocking curves, 2/ω scans and XRD reciprocal space 
maps at high-resolution settings.

Optical transmittance spectra were obtained at room 
temperature using a Varian Cary  5000 spectropho-
tometer, in a range from 200 to 700 nm. A two-channel 
measurement technique was used for transmittance 
measurements of the studied film. SL samples were 
placed in the measuring channel of the spectrophotom-
eter, and the substrate (r- or c-oriented sapphire) was 
placed in the comparison channel.

Results and Discussion
Experimental Study
Superlattice structures with 4  ML MgO and with CdO 
sublattice thickness ranging from 1 to 12 ML were ana-
lyzed. Figure  1a, b show the full-range XRD scans for 
selected {CdO/MgO} SLs. The θ/2θ patterns indicated 
two crystallographic orientations of the substrate: [01-
12] and [0001] (r-orientation and c-orientation). We also 
recorded a cubic phase of the {CdO/MgO} superlattices 
SLs. For the samples grown on r-plane sapphire substrate 



Page 3 of 9Przeździecka et al. Nanoscale Res Lett           (2021) 16:59 	

we obtained [100] {CdO/MgO} SLs orientation and for 
the structures grown on c-plane sapphire substrate we 
received [111] {CdO/MgO} SLs orientation. We do not 
observe other crystallographic phases of {CdO/MgO} 
materials.

For thorough analysis of {CdO/MgO} SLs the 2 Theta–
Omega (2θ/ω) scans in high resolution mode were meas-
ured. For the SLs structures grown on r-sapphire we 
investigated 200{CdO/MgO} X-ray diffraction reflection 
(Fig. 2a) and for the SLs structures grown on c-sapphire 
we investigated 111 {CdO/MgO} X-ray diffraction reflec-
tion (Fig. 2b). The solid lines on Fig. 2 shows the meas-
urement results. Superlattice-related satellite peaks are 
clearly observed in both orientations, confirming the 
good periodicity and smoothness of the interfaces. Zero 
order peaks describing average parameters of SLs are 
marked as S0. Position of S0 peak depends on CdO sub-
layers thickness. Satellite peaks (S1, S2) are well defined 
in both samples. 2θ/ω XRD scans show that the main 
peak coming from SL (S0 order peak) is shifted to smaller 
angles with increasing of Cd concentration. It indicates 
that lattice parameters is increasing with higher Cd 
content.

For each measured 2θ/ω scan we calculate the 2θ/ω 
profiles using fitting procedure described in [40]. On 
Fig.  2 we show 2θ/ω XRD scan simulations by dashed 
lines. The simulation procedure is based on the dynami-
cal theory of X-ray diffraction described by Takagi and 
Taupin [41–43]. We use X’Pert Epitaxy software provided 
by Malvern Panalytical company to simulate our 2θ/ω 
curves. The results obtained from simulated data we col-
lected in Table 1.

The most important parameter as we received from 
XRD simulations is the thickness of individual MgO 
and CdO layer in SL structure (Table  1). It is clearly 

visible that the thickness of MgO layer is equal to 2 nm 
for each sample as it was assumed during MBE growth 
process. For the CdO layers thickness we observe some 
differences with assumed parameters. The data present 
in Table 1 shows the recalculated thickness of individual 
CdO and MgO layers in SLs (from XRD simulations) 
expressed by amount of MLs.

The {CdO/MgO} quasi-alloy films were analyzed with a 
UV–visible–infrared spectrometer to study their energy 
band gaps. Figure  3 shows transmittance spectra meas-
ured at room temperature. The cutoff for transmission is 
continuously shifted to shorter wavelengths as the CdO 
sublayer thickness decreases. The transmittance drops in 
the NIR region may be related to free carrier absorption 
and plasma reflection [44]. As we know, CdO is highly 
conductive, in contrast to MgO. When the relative thick-
ness of CdO with respect to MgO increases, most prob-
ably the resistivity of the samples increases due to the 
greater thickness of the CdO sublayers. Interestingly, 

Fig. 1  Theta–2Theta XRD scans of the {CdO(12.5 ML)/MgO(4 ML)} 
superlattices on a r-Al2O3 and b c-Al2O3
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Fig. 2  2Theta–Omega of 200 {CdO/MgO} on r-Al2O3 (a) and 111 
{CdO/MgO} on c-Al2O3 (b) XRD peaks of the series of SLs with 
different CdO layers thickness. Solid lines are the 2θ/ω XRD scan 
measurement results and dash lines are 2θ/ω XRD scan simulations. 
On the legend we mark the amount of CdO monolayers (ML)
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the transmittance drop depends on the orientation of 
the SLs, which requires further research. The energy 
band gap values (Eg) of SLs are derived by extrapolat-
ing the graph of α2 versus hν in the case of direct transi-
tions (Fig. 4a, b) and that of α1/2 versus hν in the case of 
indirect transitions, where α is the absorption coefficient 
and ν is the photon frequency, according to the work of 
Tauc [45]. In samples with a higher CdO thickness, and 
thus with a relatively higher concentration of Cd in the 
CdMgO alloy, we can extract two indirect band gaps, 
with two linear regions as shown in Fig.  4c, d. Figure  4 
shows that the band gaps of CdMgO decrease together 
with CdO thickness. The optical transmission measure-
ments demonstrate that the direct energy band gap of 
{CdO/MgO} quasi-alloys can be varied over a range from 
2.6 to 6 eV.

Calculation Method
The Vienna ab Initio Simulation Package (VASP), based 
on quantum density functional formalism, following ear-
lier investigations, was used in all calculations reported 
here [46–48]. Optimization of the ionic positions was 

performed in two stages, using different generalized gra-
dient approximation (GGA) functionals for exchange–
correlation energy. A standard plane wave functional 
basis set, with an energy cutoff of 605 eV, was used. The 
Monkhorst–Pack grid (5 × 5 × 5) was used for efficient 
integration in k-space [49]. Projector-Augmented Wave 
(PAW) pseudopotentials with Perdew, Burke, and Ernz-
erhof (PBE) exchange–correlation functionals were used 
in the treatment of Cd, Mg, and O atoms [50–52]. An 
electronic self-consistent (SCF) loop was terminated 
for a relative energy change below 10–7. The ab  ini-
tio lattice parameters for bulk oxides were as follows: 
aCdO = 4.783 Å, aMgO = 4.236 Å. These lattice parameters 
are in good agreement with the values determined by 
X-ray measurements: aCdO = 4.695 Å, aMgO = 4.21 Å [15, 
53]. The positions of the atoms were relaxed until the 
magnitude of the force acting on a single atom was below 
0.005 eV/Å.

The PBE density functional provides incorrect values 
for band gaps of semiconductors. Several methods have 
been used to remove this deficiency, such as the (GW) 
approximation [54], hybrid functionals using Hartree–
Fock correction [55], or half-occupation generalized-
gradient approximation (GGA-1/2) [56]. In the reported 
calculation we used the most efficient latter scheme, 
proposed by Ferreira et  al. [56]. Spin–orbit effects were 
neglected in these calculations, since the high-lying 
valence states and low-lying conduction states lead to a 
small splitting (of the order of 10  meV). The calculated 
band gaps of bulk MgO and CdO were EΓ(MgO) = 7.1 eV 
and EΓ,L(CdO) = 2.55, 1.23  eV, respectively. Thus, satis-
factory agreement with low-temperature experimental 
band gaps was obtained: Eg(MgO) = 7.83 eV [15] and EΓ, 

L(CdO) =  ~ 2.5, 0.8–1.12 eV [57, 58]. This completes the 
above-mentioned second stage in which the final results 
are obtained by application of the modified GGA-1/2 

Table 1  Thicknesses of individual layers in {CdO/MgO} superlattices on r-sapphire and on c-sapphire planed in MBE growth process 
and the best fit of XRD calculations

Samples on r-plane sapphire Samples on c-plane sapphire

MgO/CdO ML MBE MgO/CdO thickness XRD 
(nm)

MgO/CdO ML XRD MgO/CdO ML MBE MgO/CdO thickness XRD 
(nm)

MgO/CdO ML XRD

4/12 2/3.25 4.8/11 4/12 1.8/7.1 4.3/15

4/10 2/2.2 4.8/4.7 4/10 1.73/3.6 4.1/7.7

4/8 2.1/2.9 4.9/6.3 4/8 1.81/4.1 4.3/8.7

4/6 2.6/2.4 6.1/5.1 4/6 2.25/3.17 5.3/6.7

4/4 2.15/1.6 5.1/3.4 4/4 2.25/2.2 5.3/4.7

4/3 2.5/1.1 5.9/2.5 4/3 2/1.2 4.8/2.5

4/2 2.15/1 5.1/1.5 4/2 2.25/0.8 5.3/1.7

4/1 2.25/0.5 5.3/1.1

Fig. 3  Transmittance of {CdO/MgO} SLs films on (a) r-sapphire and 
(b) c-sapphire
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correction method to structures in which the positions of 
atoms and a periodic cell size were determined in the first 
stage using the PBE approximation. The band structures 
of bulk MgO and CdO for PBE and GGA-1/2 approxima-
tions are shown in Fig. 5. It is seen that PBE underesti-
mates the value of the energy gap, while in GGA-1/2 it 
is calculated correctly. After correction, the Fermi energy 
lay between the valence band maximum (VBM) and con-
duction band minimum (CBM). The band gap of CdO is 
consistent with the experimental measurements of Refs. 
[58] and [57], while the energy gap of MgO is consist-
ent with Ref. [15]. The location of the Fermi level in CdO 
is the same as in a  theoretical model based on the GW 
approach [59].

In the theoretical analysis of coherent CdO/MgO mul-
tiquantum wells, we used structures grown on the [001] 
direction. Layers of CdO and MgO were fully strained, 
i.e. there were single common lattice constants for the 
whole structure, and we assumed that there were no dis-
locations or defects at the interfaces between the two 
materials. The structure was relaxed using a conjugant 
gradient (CG) algorithm for force minimization. The 
Fermi energy was common for the whole structure, and 
as it was close to the CBM, the carrier concentration was 

Fig. 4   (α hν)2 and (αhν)1/2 plots as a function of photon energy (hν) for the {CdO/MgO} SLs films on c- or r-sapphire

Fig. 5  (Color online) Band structure obtained from VAPS for PBE 
(blue) exchange–correlation functional and GGA-1/2 (red) correction 
for MgO (left) and CdO (right)
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set to 1020 cm3. We calculated common lattice constants 
for structures composed of 4 ML of MgO and CdO lay-
ers ranging from 2 to 12 ML. For these structures, we 
calculated energy gaps between different points in the 
Brillouin zone using the GGA-1/2 correction method. 
Figure  6 shows differences between the minimum of 
the conduction band and maxima in the valence band at 
the X, L points, and one maximum located close to the 
X point but shifted slightly towards the X point, which we 
have marked ~ X.

It is obvious that the strain affects the calculated band 
structure, on Fig. 7 we plot strain conditions realized in 
our structures. From the plots it follows that CdO layer 
are compressed in growth planes by MgO layers, this 
causes the material to stretch in the growth direction 
(Fig. 7a). On the other hand, we expect in-plane the ten-
sile strain and out-of-plane compressive strain of the 
MgO layer (Fig. 7b).

Comparison of Experiment and Theory
In Fig.  8, the obtained band gap energies as a function 
of CdO layer thickness are compared with the results of 
our calculations. Our experimental points are marked as 
full for the 100 and open for the 111 orientation. Solid 
black, red and blue lines represent theoretically obtained 
values of direct and indirect band gaps in Γ, X and ~ M 
points. The experimental data are somewhat scattered, 
but reflect the theoretical trend. The experimental values 
of energy gaps are higher than those predicted theoreti-
cally. It should be noted that in the case of CdO-based 

layers, with a Cd-rich region, the electron concentration 
is usually high [57, 60]. It is well known that an increase 

Fig. 6  Calculated band structures of cubic {CdO/MgO} SLs for various numbers of CdO monolayers and for four monolayers of MgO, using the 
GGA-1/2 method

Fig. 7  Calculated strain conditions for 4ML of MgO and various 
numbers of CdO monolayers structures: (a) in-plane (epsilon xx) and 
out-of-plane (epsilon zz) strains in CdO; (b) in-plane and out-of-plane 
strains in MgO
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in carrier density leads to the filling of states in the band, 
thus shifting the absorption onset to higher energies. 
This effect was independently discovered by Moss [61] 
and Burstein [62] in 1954 and is called the Burstein–
Moss shift (BMS). Therefore, in CdO-based materials the 
band gap renormalization should be considered up to an 
electron density of about 9 × 1018  cm−3. We expect that 
the BMS will be higher for SL structures with a  larger 
thickness of CdO layers. Likewise, the stress in SL lay-
ers can influence the measured band gap energies; as 
we know, in the case of thicker MgO and CdO sublay-
ers the structure may be partially relaxed, whereas the 
calculations were made for fully strained SLs, i.e. single 
lattice constants were used for the whole structure, and 
we assumed that there were no dislocations or defects 
at the interfaces between the two sublattice materials. 
The Fermi energy was common for the whole structure 
and was in the middle of the energy gap, and so the free 
carrier concentration was set to zero. Calculated values 
of B-M shift in pure CdO for an electron concentration 
level of 2 × 1020 cm−3 are around 300 meV, and therefore 
for Cd-rich structures we should subtract certain values 
(< 300 meV) from the measured energy band gap.

In the case of X-ray diffraction we also subtracted 
average lattice constants for measured SLs. The meas-
ured lattice constants increase with CdO sublayer 

thickness. The data obtained are compared with the 
theoretical calculations in Fig. 9. The experimental val-
ues are seen to be smaller than the calculated values, 
but the experimental data reproduce the theoretical 
trend.

Fig. 8  Comparison of the theoretical band gaps (solid lines) in Γ, X points and one maximum located close to M point and experimental data 
(symbols) obtained from transmittance data

Fig. 9  Comparison of the theoretical lattice constant (solid line) 
and experimental data (symbols: open for samples grown on 111 
direction, full for samples grown on 001 direction) for series of SLs 
with different thickness of CdO sublayers
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Conclusions
In conclusion, {CdO/MgO} quasi-alloys were synthesized 
by the MBE method in two crystallographic orientations. 
Their energy band gap and lattice constant properties 
were studied experimentally and calculated theoretically. 
The energy band gap of {CdO/MgO} quasi-alloys can be 
continuously modulated in a wide range from 2.6 to 6 eV 
by changing the thickness of the CdO sublattices. Cor-
respondingly, the measured average lattice constants 
for {CdO/MgO} varied from 4.23 to 4.61  Å as the MgO 
thickness was kept constant and the CdO thickness was 
increased from 1 to 12 ML. The obtained values of the lat-
tice constant are in good agreement with theoretical cal-
culations, but are somewhat smaller than the calculated 
values, whereas the measured energy gaps are higher than 
those calculated ab initio for fully strained structures. The 
results show that the energy band gap of CdO can be tuned 
to higher values by using {CdO/MgO} quasi-alloys, and it is 
possible to engineer the energy gap over a wide range. This 
work has shown that {CdO/MgO} heterostructures can be 
useful in developing new optoelectronic devices, such as 
detectors for the visible, UV A, UV B and UV C regions.
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